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1. Introduction

In this paper we study the quantum massless radiation, both Bosonic and Fermionic, from

excited closed superstrings. (For a general study of the decay of superstrings by precise

numerical computations see [1 – 5] ). In particular we look for string states that, in some

range of the radiation energy, produce a spectrum with some (bosonic) characteristics found

in the classical approximation, namely the interesting cases of classical cusps or kinks [6, 7].

The quantum spectrum is expected to agree possibly with the classical rersults in a

low energy range, that is for wavelengths much larger than
√

α′, of course.

We will try to be as general as possible and therefore we do not write in detail particular

string states that give a particular spectrum. Rather, we find that a spectrum resembling,

for instance, classical cusp-kink characteristics occurs on average for string configurations

in which the mode excitations satisfy a kind of sum rule. We can thus further count the

number of such strings satisfying that constraint. This result can be useful for evaluate

how much it is likely to find that particular spectrum among the various signals possibly

arriving from cosmic strings (for general studies of cosmic strings see [8, 6, 9 – 13]).

Our method is based on the observation that average radiation spectra from strings

and their properties are easily derived in a suitable LightCone (LC) gauge, thus working

directly with physical states and avoiding the ghost formalism.

The section 2 summarizes (and generalizes) the classical analysis.

In section 3 we introduce the convenient LC gauge and we derive the main quantum

formula. It is surprisingly simple both for Bosonic and Fermionic massless emission.
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In section 4 we derive the generic (Bosonic and Fermionic) average radiation spectrum

from a string of large mass, by using the quantum formula in the LC gauge and the standard

statistical mechanics method of the chemical potential.

In section 5 we modify the chemical potential by introducing a suitable constraint

in the average, in the form of a weight depending on a sum over the mode occupation

numbers. We show that, in this way, a cusp or kink like spectrum is obtained in some

sizable radiation energy domain. We then estimate the number of such string states and

how rare they are among the generic set of states of a given large mass.

In the appendix A we review the (classical) relation between the gauge where ∂X0 is

constant (which we call the TP Temporal gauge) and the gauge where ∂X+ is constant

(which is called the LC LightCone gauge). That relation can also be seen as an algorithm

for obtaining (classical) solutions in the TP gauge which will automatically satisfy the

Virasoro constraints.

In the appendix B we construct a sample of a generic classical string state in the

Temporal gauge, following the results of section 4 and the recipes of appendix A (for a

recent portait of the string based on the computation of form factors see [13]).

In the appendix C we discuss the particular case of the state of maximal angular mo-

mentum, which classically is an example of a cusp. We compute and compare the classical

and the quantum spectrum for the mass M =
√

4N/α′ with N = 1000. Even for this large

value of N , there is no radiation energy region for which the quantum spectrum matches

the classical cusp behaviour. The classical and quantum spectra show a good agreement for

small radiation energy, where most of the radiation occurs, but where however the classical

behaviour is not yet of the cusp form; for larger radiation energies, where the classical

spectrum is cusp-like, the quantum spectrum falls off to zero much more rapidly than the

classical one.

2. The classical computation

We begin by reviewing the classical massless radiation rate of a closed string (see [7, 4]):

rate = g2
s

pD−3
0

M2

∫

dΩ
∑

ξ,ξ̃

|ξjI
j
Rξ̃kI

k
L|2 . (2.1)

Here D is the number of extended dimensions, M =
√

4N/α′ is the mass of the string

(assumed at rest), p0 is the energy of the emitted massless particle (graviton, scalar or

antisimmetric tensor), ξj ξ̃k its polarization and

Ij
R,L =

∫

dσ±eipµXµ
L,R(σ±)∂Xj

R,L(σ±) . (2.2)

This computation is usually done in the Temporal gauge where X0
L,R = α′(M/2)σ± with

σ± = τ ± σ such that X0 = X0
L + X0

R = α′Mτ .

There is a saddle point [7] in the integral defining ξ · IL,R if

p · ∂XL,R = 0 at some σ± = σc
± . (2.3)

We can take σc
± = 0. This is the condition defining a cusp.
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Another interesting case is when p · ∂XL,R has a discontinuity. This is referred as the

kink.

To be precise, a cusp or a kink occur when the above conditions are respectively

satisfied in both the Left and the Right sectors.

However, since our study can be done separately and independently for each sector,

from now on we discuss, say, the Left sector only, and write X meaning XL and ξ · I

meaning ξ · IL and σ meaning σ+. Of course the other (R) sector is treated in the same

way.

Take the frame where pµ = (p0, pz, 0) with pz = −p0. In this frame p+ = p0+pz√
2

= 0

and the cusp condition is ∂X+ = 0.

In the ”temporal gauge” the cusp is only possible if also ∂XT = 0 (for every T -

ransverse component). In fact in the Temporal gauge ∂X+ + ∂X− = constant and it

follows from the classical Virasoro constraints 2∂X+∂X− = (∂XT )2 that if ∂XT → 0 then

∂X+ ∼ (∂XT )2.

Assuming that ∂XT vanishes linearly we have

p−X+ ∼ σ3 . (2.4)

In this case, for large N0 ≡
√

α′Np0 we can extend the integration over σ to −∞,+∞ and

we get

ξ · I =

∫

dσeip−X+

ξT · ∂XT ∼
∫

dσσeicN0σ3 ∼ N
−2/3
0 . (2.5)

In general it could be that ∂XT ∼ σβ and thus p−X+ ∼ σ2β+1. In this case

ξ · I ∼ N
− γ

2

0 with 1 < γ =
2β + 2

2β + 1
≤ 2 . (2.6)

This general behavior in N0 includes the result for the kink for which β = 0 → γ = 2.

We will refer to all these cases with the various possible γ as ”cusp”.

3. The quantum computation

The quantum expression of the rate is the same as eq. (2.1) with ξ · I given by the relevant

quantum matrix element [4]. The quantum computation is most easily done in a Light-

Cone (LC) gauge, where the Fock space of the T -ransverse oscillators comprises all the

physical states. We specify the LC gauge by taking LC coordinates such that p+ = 0 as

above.

In the LC-gauge X+ = α′(M/2)σ (remember that we mean X+
L = α′(M/2)(σ + τ)).

Also the classical computation for the cusp can be performed in the LC-gauge.

This amounts simlpy to a change of integration variable in eq. (2.4)

σ → σ′ = σ3 . (3.1)

In this gauge, that is in this new variable, ∂XT is divergent ∼ σ′−1/3 (or ∼ σ′−β/(2β+1) in

the general case), rather than going to zero (see also appendix A).
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Quantum computation. In the p+ = 0 LC gauge the (Left or Right) part of the vertex

operator for emitting a massless NSNS state is (we can take it at σ = 0)

V (0) = ξT · ∂XT (0)eip−X+(0) = ξT · ∂XT (0) . (3.2)

Thus we have

|ξ · I|2 =
∑

f

|
〈

f |ξT · ∂XT |ΦN

〉

|2 , (3.3)

where |ΦN > represents the radiating state with mass M = 2
√

N/α′, which is supposed

to be at rest, and |f > is a possible final state with mass M ′ = 2
√

N ′/α′. Let us take here

α′ = 4. The radiated energy is p0 = (M2 − M ′2)/2M = N0/2
√

N with N0 = N − N ′.

The vertex is linear in the transverse oscillator operators and the computation is easy.

We are interested in the average (in particular for N → ∞) over the many different

states |ΦN > which share some properties.

For a definite p0 = N0/2
√

N , that is for a definite N0, we have

〈|ξ · IL(p0)|2〉 =
1

N Tr[(ξT · ∂XT )†N0
(ξT · ∂XT )N0

]N . (3.4)

The trace is restricted to initial states with fixed N (N being their number) and moreover

(ξT ·∂XT )N0
means restricting the operator to that part that lowers the value of the number

operator N̂ from N to the final state value N ′ = N − N0.

In terms of the transverse oscillators

(ξT · ∂XT )N0
=

√

α′

2
N

1/2
0 ξ · aN0

. (3.5)

The normalization is [ai
+n, aj

−m] = δijδnm and we take α′ = 4.

Therefore, p0 = N0/2
√

N being the radiated energy, we get THE MAIN FORMULA

∑

ξ

〈

|ξ · I(p0)|2
〉

=
∑

ξ

〈

[V †V ]N0

〉

=
∑

ξ

〈

|ξ · ∂X|2N0

〉

= 2 〈N0a−N0
· aN0

〉 . (3.6)

The above formula describes the NS radiation (say, in the Left sector). In the LC

one easily get also the corresponding formula for the R(amond) radiation by using the

Green-Schwarz formalism (see [14] ).

We remember that in this formalism the fermionic degrees of freedom are carried by the

Sa
n oscillator operators, a = 1, · · · , 8 being a spinor index, satisfying {Sa

+n, Sb
−m} = δabδnm.

Since the emitted momentum satisfies ~pT = p+ = 0, the vertex for emitting the (Left

part of) a massless fermion is VF (0) = u · S(0)

√

P̂+ where u(p) is a suitably normalized

polarization spinor and P̂µ is the momentum operator.

By averaging over u (we take
∑

u u†
aub = 2

√
α′p0δa,b) we find

∑

u

〈

|u · IF (p0)|2
〉

=
∑

u

〈

[V †
F VF ]2N0

〉

= 2 〈N0S−N0
· S+N0

〉 (3.7)

We remember that in terms of the LC oscillators the number operator is N̂ =
∑

n>0(na−n · a+n + nS−n · Sn).
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4. The average spectrum

We will call 〈2na−n · an〉 the spectrum for the Bosonic radiation, or 〈2nS−n · S+n〉 for the

Fermionic one, although this is only the Left part, and to obtain the physical spectrum one

has to take the product of Left and Right times the phase space
pD−3

0

M2 Ω.

Now we review the derivation of the general average spectrum that is taking the average

over all the states with
〈

N̂
〉

= N [15], [4].

Mimicking statistical mechanics introduce a chemical potential term e−N̂ε and, begin-

ning with the Bosonic spectrum, replace

Tr[na−n · an]N → Tr[na−n · ane−N̂ε] (4.1)

and we fix ε requiring
〈

N̂
〉

= N . We get

〈na−n · an〉 + 〈nS−n · Sn〉 =
1

N Tr[(na−n · an + nS−n · Sn)e−N̂ε] (4.2)

= DT n

{

e−nε

1 − e−nε
+

e−nε

1 + e−nε

}

where DT is the number of tranverse dimensions.

Similarly

N = Tr[e−N̂ε] =
∏

n

(

1 + e−nε

1 − e−nε

)DT

(4.3)

ε is fixed by requiring

N = DT

∑

n

{

ne−nε

1 − e−nε
+

ne−nε

1 + e−nε

}

= − d

dε
DT

∑

n

log

[

1 + e−nε

1 − e−nε

]

(4.4)

(we recognize the standard saddle-point equation of string theory).

For small ε

DT

∑

n

log

[

1 + e−nε

1 − e−nε

]

→ DT

ε
(cF + cB) (4.5)

with cF =
∫

dx log[1 + e−x] = π2/12 and cB = −
∫

dx log[1 − e−x] = π2/6.

Therefore ε =
√

DT (cF + cB)/N and we get for large N

log[N ] ∼ 2
√

NDT (cF + cB)

∑

ξ

|ξ · I(p0)|2 = 2
N0e

−N0

√
DT (cF +cB)/N

1 − e−N0

√
DT (cF +cB)/N

(4.6)

(remember N0 =
√

α′Np0). Thus we get a thermal-like (Left part of the) spectrum with

a temperature ∼ 1/
√

α′.
By repeating the computation for the (Left part of the) Fermionic spectrum it easily

seen that one gets a Fermi-Dirac distribution

∑

u

|u · IF (p0)|2 ∼ 2
N0e

−N0

√
DT (cF +cB)/N

1 + e−N0

√
DT (cF +cB)/N

. (4.7)
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5. The average quantum cusp-kink-like spectrum

Looking for the quantum states corresponding to the classical cusp or kink. In this case we

look for the Bosonic radiation.

The classical cusp expression for ξ · I eq. (2.6) is obtained for a particular angle of

the radiation momentum ~p, namely the one for which ∂X+(σ) = 0 at some σ, where

X+ = (p0X
0 − ~p ~X)/p0. Taking the p+ = 0 Light-Cone frame and looking for a quantum

spectrum corresponding to the classical cusp one, we implicitly select some particular

direction for the polarization of the quantum states relative to the direction of the emitted

momentum.

By putting in eq. (3.6) the classical cusp expression for ξ · I eq. (2.6) one expects

that, for the states corresponding to the classical cusp, it holds nγ+1 〈a−nan〉 = A with

A constant, strictly speaking for n À 1 (remember that we are considering just the Left

component).

For the classical cusp
∑nc

1 nγ+1a−nan = A · nc divergent for nc → ∞.

However, the classical behaviour can only hold up n ≤ nc ¿ N1/2, that is when the

radiated energy p0 = n/
√

α′N is much less than the inverse of the string length 1/
√

α′.
Thus we assume nc ∼ Nα with 0 < α < 1/2 and we take as a definition of quantum

cusp states the requirement
∑nc

1 nγ |ξ · I(n)|2 =
∑nc

1 nγ+1 < a−nan >= A · nc.

As for the value of A: in the literature [6, 7] it is assumed that for a generic cusp or

kink A is of the order of N . 1 We keep this assumption to see its implications. Actually

we will find that A ∼ N corresponds to quite rare, rather than generic, configurations.

There is a constraint on A since it must be
∑nc

1 < na−nan >= qN with q < 1. For

large nc this means that A = q/k(γ)N (for the standard γ = 4/3 cusp k(γ) ∼ 3.6). We

take q as a parameter; a very small q corresponds to a rather irrelevant cusp.

In the interval I = {1 ¿ n < nc} we deform the chemical potential

e−na−nanε → e−nγ+1a−nanη (5.1)

while keeping e−na−nanε for n > nc. The regions n = O(1) and n = O(nc) are left

unspecified as they do not play an important role in the following.

We get the spectrum

〈na−nan〉 = DT
ne−nγ+1η

1 − e−nγ+1η
for n ⊂ I (5.2)

〈na−nan〉 = DT
ne−nε

1 − e−nε
for n > nc (5.3)

1) Fix η requiring
∑nc

1

〈

nγ+1a−nan

〉

= A · nc.

By taking nc ≤ N
1

γ+1 we have the solution η ∼ DT A−1 since in this case for n ⊂ I
we recover the cusp spectrum

〈na−nan〉 = DT
ne−nγ+1η

1 − e−nγ+1η
→ A

1

nγ
. (5.4)

1when comparing, remember that our convention for the temporal gauge is X0 = α′Mτ whereas in the

literature on cosmic strings it is often X0 = τ ; in the latter convention A ∼ N corresponds to ∂2XT ∼ 1/M

.
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2) In order to fix ε we require

(1 − q)N = DT

{ ∞
∑

nc

ne−nε

1 − e−nε
+

∞
∑

1

ne−nε

1 + e−nε

}

. (5.5)

For large n we approximate the sum with the integral, like in the previous section.

We have

∞
∑

nc

ne−nε

1 − e−nε
→ 1

ε2

∫ ∞

ncε
dxx

d

dx
log[1 − e−x]

=
1

ε2

(

−
∫ ∞

ncε
dx log[1 − e−x] − ncε log[1 − e−ncε]

)

≈ − 1

ε2

∫ ∞

0
dx log[1 − e−x] =

cB

ε2
. (5.6)

The pre-last step holds for ncε → 0. In fact, for N large we get (1 − q)N = cB+cF
ε2

and thus ε = N−1/2
√

DT (cF + cB)/(1 − q).

3) The number of these cusp states is

log[Nγ ] = DT

{

−
nc
∑

1

log[1 − e−nγ+1η] −
∞
∑

nc

log[1 − e−nε] +
∞
∑

1

log[1 + e−nε]

}

.

(5.7)

Note that

−
∞

∑

nc

log[1 − e−nε] +
∞
∑

1

log[1 + e−nε] ≈ 1

ε
(cB + cF + ncε log[1 − e−ncε]) (5.8)

4) In conclusion we get

log[Nγ ] = a · n̄ + 2
√

(1 − q)DT (cF + cB) · N 1

2 − nc log
[

N
1

2 /nc

]

(5.9)

where a is some constant and n̄ is the minimum between nc and N
1

γ+1 .

For instance in the case γ = 4/3 and nc ∼ N
1

γ+1 we get for the log of the ratio of the

cusp number to the general average number

log

[N4/3

N

]

= −2
√

DT (cF + cB) ·
(

1 −
√

1 − q
)

· N1/2 + (a − b log[N ]) · N3/7 . (5.10)

Therefore those cusps are very rare within the variety of the generic string states.

That fact could have been already guessed by observing how different is the N depen-

dence of the spectrum for 1 ¿ n < nc: it is 〈na−nan〉 ∼ N/nγ in the cusp configurations

whereas 〈na−nan〉 ∼ N1/2 for the generic string state.

In the generic case the dominant contribution to the sum rule
∑

n 〈na−nan〉 = N comes

from n ∼ N1/2, whereas in the cusp configurations the region n ¿ N1/2 gives a substantial

fraction of the result.
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Taking a higher value for nc, say nc ∼ N1/2, would give an even smaller fraction since

the main difference with the above computation would be replacing cB with c̃B < cB in

the expression of log[Nγ ].

In order to find more abundant cusp configurations we should assume A ∼ N1/2. In

this case q ∼ N−1/2 in (5.9): we find more states but the possibly observed radiation would

be more feeble and therefore the cusp-like characterization of the signal becomes rather

marginal.

A. Temporal and lightcone gauges

We consider a string at rest with four-momentum Pµ = (M,~0). Here we put α′ = 1.

The Virasoro constraints are, for the Left or Right part,

(∂X0
L,R)2 = (∂ZL,R)2 + (∂ ~XL,R)2 (A.1)

where ∂ is the derivative with respect to the World-Sheet (WS) parameter sL,R = τ ± σ

which is different for different gauge choices. We have chosen a Z−direction thus ~X is

defined to be transverse. Let us consider for instance the Left part (dropping the suffix

”L”).

In the Temporal (TP) gauge one takes ∂ŝX
0
TP = M

2 where we call ŝ the WS parameter.

In the LightCone (LC) gauge one takes ∂sX
+
LC ≡ ∂sX

0
LC + ∂sZLC = M

2 where we call

s the new WS parameter.

Classically, the passage between TP and LC is a redefinition of the WS parameter

ŝ → s, that is ~XLC(s) = ~XTP (ŝ(s)) and similarly for X0, Z:

(∂ŝX
0
TP + ∂ŝZTP )

∂ŝ

∂s
=

M

2
⇒ ∂ŝ

∂s
=

1

1 + 2∂ŝZTP
M

(A.2)

Note that, because of the constraint, |∂ŝZTP | ≤ M/2 and therefore both ŝ(s) and s(ŝ) are

well defined. It follows that

∂s
~XLC =

∂ŝ
~XTP

1 + 2∂ŝZTP
M

(A.3)

For instance, we see that even if ∂ŝ
~XTP , ∂ŝZTP only contain one Fourier mode of the WS

parameter in the TP (like it is for the maximal angular momentum string configuration),

∂s
~XLC will in general contain all the Fourier modes of the WS parameter in the LC.

Viceversa in the LC gauge we have

∂sX
−
LC =

2|∂s
~XLC |2
M

⇒ ∂sX
0
LC =

M

4
+

|∂s
~XLC |2
M

(A.4)

∂s

∂ŝ
∂sX

0
LC =

M

2
⇒ ∂s

∂ŝ
=

2

1 + 4|∂s
~XLC |2

M2

(A.5)

and therefore

∂ŝ
~XTP =

2∂s
~XLC

1 + 4|∂s
~XLC |2

M2

. (A.6)

– 8 –
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It can be checked that (A.2) and (A.6) are consistent.

We see that the classical relation between TP and LC is highly nonlinear. The quantum

version of it is to our knowledge not available.

B. The shape of a generic string

From the form of the (bosonic) spectrum eq. (4.6) and the main formula eq. (3.6) we can

reconstruct the corresponding classical transverse string in the LC gauge (consider here

the Left component), by putting for the transverse part:

Xi
LC(s) =

∑

n

ci
nCos

[

ns + θi
n

]

(B.1)

where θi
n are random phase shifts, in general different for Left and Right, and

∑

i

(ci
n)2 = A

1

n

e
− n

g
√

N

1 − e
− n

g
√

N

. (B.2)

Here g = 1/
√

DT (cB + cF ) and A =
∑

Ai where the values of Ai are randomly

distributed among the transverse directions.

For the sake of simplicity we will consider the particular example where only one of

the Xi
LC is different from zero. Therefore our sample string is less random than the true

generic one. We conventionally take A = g = 1.

We do the same for the Right component, with different random phase shifts.

We have taken N = 100 (and cutoff the sum at n = 100). We assume that the string

state is at rest and its mass is, according to the LC formulae,

M = P+ = P− = 2

√

∫ 2π
0 ds(∂sXLC(s))2

2π
. (B.3)

The result is the same for Left and Right as it should be, and M is proportional to
√

N .

According to the LC prescription we put (Left component)

X+
LC =

M

2
s X−

LC =
M

2
s +

{

∫ s
0 ds′(∂sXLC(s′))2

2π
− M

2
s

}

. (B.4)

The part of X− which is in curly brackets is taken to be 2π-periodic, that is, its value at

s + 2π is identified with its value at s. Further, from the previous formulae,

ZLC = −
{

∫ s
0 ds′(∂sXT (s′))2

2π
− M

2
s

}

. (B.5)

In order to get the string in the Temporal gauge we use eq. (A.5) to get s(ŝ) and take

XTP (ŝ) = XLC(s(ŝ)), ZTP (ŝ) = ZLC(s(ŝ)).

We do the same for the Right part and finally we get in the TP gauge

XTP (τ, σ) = XTP (Left)(τ − σ) + XTP (Rigth)(τ + σ) (B.6)

ZTP (τ, σ) = Z(TP Left)(τ − σ) + ZTP (Rigth)(τ + σ)

In figures 1–3) we show the resulting (TP) string in the plane X,Z for some values of

τ = 0, π/4, π/2.
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Figure 1: A generic string at τ = 0.
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Figure 2: A generic string at τ = π/4.
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Figure 3: A generic string at τ = π/2.

C. A particular cusp-like case: the maximal angular momentum state

The classical state of a closed string of maximal angular momentum is, in the Temporal

Gauge,

X1
L + iX2

L√
2

=
L

2
√

2
ei(τ+σ) X1

R + iX2
R√

2
=

L

2
√

2
ei(τ−σ) (C.1)

that is

X1 + iX2

√
2

=
X1

L + iX2
L√

2
+

X1
R + iX2

R√
2

=
L√
2
eiτcos(σ) (C.2)
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Figure 4: Classical (black) and quantum (red) spectrum times n4/3.

and X0 = α′Mτ = Lτ . In the quantum state M = 2
√

N/α′ where the integer N is the

eigenvalue of the number operator N̂ .

One would think to represent the corresponding quantum state by a coherent state of

the oscillators. However due to the Virasoro constraints this coherent state would not have

a definite mass and therefore X0 would be undefined. Luckily we do not need that, since

we know precisely the unique quantum maximal angular momentum state in the Temporal

Gauge:

|ΨJmax >=
(b−1)

Nψb
−1/2[0 >L√
N !

⊗
(b̃−1)

N ψ̃b
−1/2[0 >R√
N !

(C.3)

where b−1 =
a1
−1

+ia2
−1√

2
, ψb

−1/2 =
ψ1
−1/2

+iψ2
−1/2√

2
. Therefore we can compute

∑

ξ |ξ · IL|2 both

classically and quantum mechanically.

Classically one has radiation of the bosonic part of the graviton multiplet therefore we

compare with the quantum NS massless emission.

The relevant formulae are written in [4], that is, referring to [4], the modulus square

of eq. (3.45) for the classical radiation and eqs. (3.7), (3.8) for the quantum computation,

together with the explicit expressions in (3.10)–(3.13) and in appendix B for the rest. It is

important to keep all the terms of the quantum computation, which has been checked by

comparing the result for NSL × NSR with the independent computation made by taking

the imaginary part of the torus diagram and restricting the spinstructure to NS-NS.

To look for the cusp spectrum we take the emitted momentum to lay in the X1,X2

plane. The classical result for
∑

ξ |ξ · IL|2 is expressed as a constant times N times a

function depending on n only (remember the emitted energy ω = n/(2
√

N)). It reaches

rather slowly the expected behavior n−4/3 for large n.

The quantum result is a more complicated non factorized expression in terms of N

and n and we have computed it for N = 1000 and n ≤ 300. It is very near to the classical

result for n < 50 (this is also a check of the computation since the normalization is fixed),

where however the classical result has not yet reached the cusp-like asymptotic behaviour,

after which it goes to zero more rapidly.

The comparison is shown in figure 4 where we show the classical (black) and quantum

(red) results as a function of n, both multiplied by c × n4/3, choosing c such as to get the

classical curve = 1 for n = 1000.
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Therefore this particular state does not seem to follow the cusp-like pattern and there-

fore its behaviour cannot be compared with the average cusp one. However it agrees with

the generic expectation that the most important part of the radiation is emitted for low

n where it matches the classical pattern. In general, that region of small n is not likely

to be part of the asymptotic, possibly cusp-like, behaviour. If this is true, then the cusp

characterization of the string states would not be so relevant for observations.
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